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The equations for the two-dimensional motion of a layer of uniform vorticity in an 
incompressible, inviscid fluid are examined in the limit of small thickness. Under the 
right circumstances, the limit is a vortex sheet whose strength is the vorticity 
multiplied by the local thickness of the layer. However, vortex sheets can develop 
singularities in finite time, and their subsequent nature is an open question. Vortex 
layers, on the other hand, have motions for all time, though they may develop 
singularities on their boundaries. Fortunately, a material curve within the layer does 
exist for all time. Under certain assumptions, its limiting motion is again the vortex 
sheet, and thus its behaviour may indicate the nature and possible existence of the 
vortex sheet after the singularity time. Similar asymptotic results are obtained also 
for the limiting behaviour of the centre curve as defined by Moore (1978). By 
examining the behaviour of a sequence of layers, some physical understanding of the 
formation of the curvature singularity for a vortex sheet is gained. A strain flow, 
induced partly by the periodic extension of the sheet, causes vorticity to be advected 
to a certain point on the sheet rapidly enough to form the singularity. A vortex layer, 
however, simply bulges outwards as a consequence of incompressibility and 
subsequently forms a core with trailing arms that wrap around it. The evidence 
indicates that no singularities form on the boundary curves of the layer. Beyond the 
singularity time of the vortex sheet, the limiting behaviour of the vortex layers is 
non-uniform. Away from the vortex core, the layers converge to a smooth curve 
which has the appearance of a doubly branched spiral. While the circulation around 
the core vanishes, approximations to the vortex sheet strength become unbounded, 
indicating a complex, local structure whose precise nature remains undetermined. 

1. Introduction 
Often, the properties of vorticity are used to understand the motion of 

incompressible fluids (see Saffman & Baker 1979). In particular, a t  high Reynolds 
numbers the vorticity is concentrated typically in small regions and so it is tempting 
to use simple vorticity distributions as models for complicated flows (see Smith 1986 
for applications in aerodynamics). The hope is that these vorticity distributions 
represent the first term of an outer expansion based on the method of matched 
asymptotic expansions for high-Reynolds-number flows (Van Dyke 1975). For 
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steady-state flows, matched asymptotic expansions have been used extensively with 
success, for example, in the study of boundary layers. 

For unsteady flows, the construction of an asymptotic expansion for high 
Reynolds number is more complicated. In  principle, i t  should be possible to construct 
inner and outer expansions that match a t  each fixed time. Conceptually, the problem 
is simplified if the outer expansion is a solution to Euler’s equations for all time. 
Difficulties here are in the choice of initial conditions, in the long-time existence of 
the Euler solution, and in the possibility that the motion may lead to a failure of the 
assumptions in the asymptotic analysis. 

An important special case is the narrowly confined shear layer that is shed from 
bodies or that occurs naturally in atmospheric or oceanic flows. A simple candidate 
for the outer flow for such a shear layer is a vortex sheet, whose motion is described 
by the Birkhoff equation. We are unaware of any work that shows that the vortex 
sheet is an outer flow for all time, and now recent work casts doubt upon this 
possibility. There is strong evidence that the sheet develops a curvature singularity 
in finite time. This evidence is both of a numerical and an analytical nature, and 
arises from studies of the two-dimensional Kelvin-Helmholtz instability. By 
considering a perturbation expansion in the amplitude of a small disturbance, Moore 
(1979) was the first to provide analytical evidence that a vortex sheet develops a 
curvature singularity from analytic initial data. Meiron, Baker & Orszag (1982) 
found results consistent with Moore’s by examining the Taylor series in time 
constructed numerically. Using a Fourier filter to control the growth of round-off 
errors, Krasny ( 1 9 8 6 ~ )  used the point-vortex approximation to the Birkhoff 
equation to study the evolution of the vortex sheet, and also found results consistent 
with Moore’s. He found that the point-vortex approximation converged up to, but 
not beyond, the singularity time. On the other hand, Higdon & Pozrikidis (1985), 
using a different numerical method, claimed that the singularity forms as a 
consequence of a tightening spiral, with diverging vortex sheet strength at the spiral 
centre. This is in contradiction with Moore’s subsequent (1985) analysis of his 
asymptotic equations, and the numerical results of Meiron et al. (1982), and Krasny 
(1986a), which indicate a finite vortex sheet strength a t  the singularity time. 

Unfortunately, the precise form of the singularity has not yet been demonstrated 
analytically. There are some analytic results. Local existence of vortex sheet motion 
from analytic initial data has been established by Sulem et al. (1981). They have also 
shown that the motion is well-posed if restricted to analytic functions. Caflisch & 
Orellana ( 1 9 8 6 ~ )  have established a lower bound on the time of singularity formation 
for sufficiently small initial data. There are specific examples of vortex sheet motion 
where a curvature singularity develops in finite time from analytic initial conditions 
(Caflisch & Orellana 19863; Duchon & Robert 1989) ; these examples establish that 
the motion is ill-posed in certain non-analytic function spaces (Caflisch & Orellana 
1986b). Note that a vortex sheet is a singular distribution of vorticity and makes 
sense only as a weak solution to the Euler equations. The well-developed existence 
and uniqueness theory for smooth solutions of the two-dimensional Euler equations 
is not applicable here (see, for example, McGrath 1967). There is rigorous theory 
establishing the existence of measure-valued solutions to the evolution of vortex 
sheets as described by the Euler equations (Diperna & Majda 1987). However, the 
concept of a measure-valued solution is so general that it provides little information 
about its specific nature. 

Because consistent discretizations of the Birkhoff equation have failed to yield 
reliable results past the singularity time, alternative approaches have been adopted. 
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Krasny (1986 b )  modified the Biot-Savart integral, replacing the singular integrand 
by a smooth one. A smoothing parameter, S, is kept fixed while the time step and 
number of points are varied to obtain a converged solution, which has the form of a 
doubly branched spiral past the singularity time. When the smoothing parameter is 
decreased, the outer turns of the spiral suffer little change, but there are many more 
turns in the inner part. These results raise the possibility that the vortex sheet is a 
doubly branched spiral. The uncertainty in this conjecture stems from the spatial 
non-uniformity in the innermost region of the spiral as S is decreased. Thus the limit 
may not exist or have simple form. One might expect the spiral to be self-similar near 
its centre, but the only known similarity solutions for vortex sheet motion have an 
infinite vortex sheet strength at  the moment of formation of the spiral, presumably 
at  the singularity time (Pullin & Phillips 1981). This is contrary to the nature of the 
singularity in the vortex sheet for the Kelvin-Helmholtz instability. Further 
possibilities are that a self-similar spiral in the presence of a strain flow may have the 
right behaviour near its centre (D. I. Pullin, private communication), or that the 
spiral is not self-similar. 

The approach adopted in this paper is to use smoother solutions to Euler’s 
equations and study their limiting behaviour as a means to uncover the nature of the 
vortex sheet. Specifically, the vortex sheet is replaced by a layer of finite thickness 
and uniform vorticity. This model has several advantages. Yudovich (1963) has 
proven the global existence and uniqueness in time for such vorticity distributions. 
Moore (1978) has shown that the vortex layer approaches a vortex sheet 
asymptotically under the right conditions. The flow may be computed via the 
method of contour dynamics (Zabusky, Hughes & Roberts 1979; Pullin 1981 ; Pullin 
& Jacobs 1986). Since viscosity diffuses a shear layer, the vortex layer may be 
regarded as a macroscopic model for the behaviour of a thin, viscous shear layer. In 
$2 we present the equations of motion for the vortex layer and vortex sheet, and in 
the following section, we describe the asymptotic relationship between thin vortex 
layers and vortex sheets. 

The motion of a thin vortex layer i s  interesting in its own right. Yudovich’s theory 
does not exclude the interfaces bounding the vorticity from acquiring singularities, 
such as corners or cusps, in a finite time. A. Majda (private communication) has 
shown that the layer interfaces will remain smooth for small times. Pozrikidis & 
Higdon (1985), using the method of contour dynamics, have studied numerically the 
motion of periodic vortex layers, and observed the roll-up of the vorticity into 
roughly elliptical cores with thin trailing braids. High curvature grows rapidly where 
the braids attach to the core, but they did not present any quantitative analysis of 
the behaviour of curvature. One possibility is that curvature singularities develop on 
the bounding curves in finite time and that these singularities become the vortex 
sheet singularity in the limit of vanishing thickness. In $4 we describe the numerical 
techniques that we use to study the evolution of thin vortex layers, and the 
numerical evidence, presented in $5,  suggests strongly that the singularity in the 
vortex sheet is not the limit of any type of singularity in the bounding interfaces of 
the vortex layer. 

The major focus of this study is to examine the limiting behaviour of the motion 
of a family of vortex layers with decreasing thickness. Moore (1978) has shown that 
the curve lying midway between the interfaces becomes a vortex sheet in the limit of 
vanishing thickness, whose strength is proportional to the local thickness of the 
layer. His asymptotic analysis is based on the construction of an inner, local flow 
near the layer and an outer, far-field flow that are matched together. There is a 
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direct, formal approach based on the expansion of the integrals that describe the 
motion of the interfaces. This approach, adopted in $3, requires that the bounding 
curves lie a short distance on either side of some curve internal to the layer. For 
layers with smaller and smaller thicknesses, the bounding curves and the internal 
curve should approach a limiting curve. As a start, the internal curve is chosen to be 
the limit curve and it is assumed that it is a vortex sheet of known strength. Then 
the vortex layer must have a local thickness proportional to the vortex sheet 
strength if i t  is to behave asymptotically like the vortex sheet. This result provides 
the framework for the numerical study conducted in $§5 and 6 ;  a family of vortex 
layers are chosen so that their initial thicknesses are proportional to the strength of 
a given vortex sheet and the motion of the layers is computed numerically. 

The results show a major difference between the motion of a thin vortex layer and 
its approximation by the motion of a vortex sheet. Briefly, in both cases a straining 
flow drives the vorticity towards an accumulation point that becomes the point of 
curvature singularity for the vortex sheet. The layer, on the other hand, bulges owing 
to incompressibility. The bulge in the layer reorganizes into a rotating, roughly 
elliptical core about which trailing arms wrap. For thinner layers, the core is smaller 
and forms closer to the singularity time, while the trailing arms wrap further around 
the core. It is difficult to extrapolate the limiting form for the layer from this 
behaviour. 

Given the uncertainty in the relationship between the vortex sheet and the 
limiting curve beyond the singularity time, it is valuable to choose different internal 
curves whose existence is independent of that of the vortex sheet. Moore (1978) used 
the centre curve, and we use his results as a check on the validity of our asymptotic 
expansions. Another choice is the material curve whose global existence is assured by 
the theory of Yudovich (1963). In  both cases, the internal curves become vortex 
sheets asymptotically. These results, derived in $3, provide us with further tools, 
used in $6, to  study the properties of the limiting curve. Before the singularity time, 
the centre curve and the material curve both converge to the vortex sheet. After the 
singularity time, the convergence is non-uniform, and so reliable extrapolation is 
difficult, but the apparent limit is composed of a vortex sheet in the form of a doubly 
branched spiral where the trailing arms occur and a point of infinite vortex sheet 
strength, but no net circulation, where the cores occur. 

Finally, we discuss the relevance of our results and present our conclusions in $7.  

2. The equations of motion 

motion of an inviscid, incompressible fluid of constant density is governed by 
In terms of the vorticity, w ,  and the stream function, $, the two-dimensional 

Dw 
- = 0, 
Dt 

(2 . la)  

A$ = - w ,  (2.lb) 

(2.1 c) 

where u and v are the components of the velocity field. A simple weak solution to 
these equations consists of a region of constant vorticity embedded in irrotational 
flow, with the velocity continuous across the interfaces bounding the region. Zabusky 



The connection between thin vortex layers and vortex sheets 165 

FIGURE 1. A schematic of the vortex layer. 

et al. (1979) noted that for such flows the motion is determined completely by the 
location of the interfaces. 

For a periodic layer of constant vorticity, Pozrikidis & Higdon (1985) followed 
Zabusky et al. (1979) in expressing the velocity of the fluid in terms of a source 
distribution along each interface. We follow Pullin (1981), Broadbent & Moore (1985) 
and Pullin & Jacobs (1986) in expressing the velocity in terms of a dipole distribution 
along each interface. This formulation is the most convenient for an asymptotic 
analysis of thin layers and has certain computational advantages as well. 

The vorticity region considered here is a periodic layer as shown in figure 1, with 
mean width H, periodic length L (we take L = 27c without loss of generality), and 
vorticity - 2 U / H  (this implies (u, v) --f ( & U,  0) as y-f & 00) .  Let the lower interface, 
I',, be parametrized as zl(p), and the upper interface, r2, as z 2 ( p ) ,  where z j ( p )  = 
x,(p)+iy,(p), -00 < p  < +a, and z,(p+27c) = 2n:+zj(p) .  R,, R,, and R, denote the 
lower, middle, and upper regions, respectively. The complex fluid velocity, w = 
u + iv, a t  a field point 7 = x + iy is given in the compact form, 

The asterisk superscript refers to complex conjugation, the q subscript refers to 
differentiation, and 

1 v - z  
P(7,z) =:cot- (2 .3 )  

h i  2 * 

A derivation of (2 .2 )  is given in Pullin & Jacobs (1986). Since the interfaces must 
move with the fluid velocity, their equations of motion follow by setting 7 = z,(p, t ) ,  
or 

- (24 t )  = W l b ,  t )  = w ( z , ( p ,  t ) ) ,  ( 2 . 4 ~ )  
at 
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where the partial time derivatives are taken keeping the Lagrangian variable, p, 
fixed. The set of evolution equations for the interfaces, (2 .2)  and (2.4), requires 
knowledge of the location of the interfaces only. 

The Lagrangian motion, as defined by (2.4), is inconvenient for both computational 
and asymptotic purposes, since points on the interfaces advect indefinitely to the 
right or left as a consequence of the shear. It is preferable to keep the computational 
points trapped inside a periodic window, and so a tangential speed 5 is added to fix 
the first point a t  z(p = 0) = 0. Thus, (2 .4)  is replaced by 

Izjp(P, t)i. 
A simple steady state for the motion of the vortex layer is given by y, = -$H and 

yz = $H.-This ste&dy state is linearly unstable to perturbations of the form 

X, = p+ge'l{A,[e-2X"--1 +kH]+A,kHe-"}(coskp- l)+e"t{A,-A,e-kH}sinkp, 

U 
Ha 

z2 = p--ee"t{A,kHe-kH+A,[e-2kH-i  +IcH]} (coskp-1) 
( 2 . 6 ~ )  

+ cut{ -Al e-lcH +A2}  sin kp, (2.6 b )  

Ha 
U 

y, = - +H + e"'{ -A,[  1 - kH] + A 2  ePkH} cos kp + ert -Al sin kp, ( 2 . 6 ~ )  

H a  
U y, = ifi + cut{ -A ,  e-lcH +A,[  1 - kH]} cos kp + eat -A,  sin Icp, ( 2 . 6 d )  

where the growth rate a is given by 

u2 
H2 

( ~ 2  = - [e-2kH - (1 - IcH)']. (2.7) 

The maximum growth rate a, x 0.4U/H occurs when kH x 0.8. When kH > 1+ 
exp ( -  k H ) ,  the perturbation is neutrally stable. These results were first obtained by 
Rayleigh ( I S S O ) ,  who was very concerned about the ill-posedness of vortex sheet 
motion and its regularization by a thin layer of finite thickness. 

The motion of a vortex sheet, parametrized by a Lagrangian variable p as z(p,t), 
is given by the Birkhoff-Rott equation 

-(P, t )  = p r(a, t)  P(Z(P> t ) ,  4% t))s,(q, t )  dg, ( 2 . 8 ~ )  

where the integral is a principal-value one, and y is the vortex sheet strength, 
satisfying 

(2 .8b )  

1: az* 
at 

a 
j j (y(P,Wp(PJ))  = 0. 

This equation expresses the conservation of circulation along the sheet. 
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A steady state for the motion of the vortex sheet is given by y = 0 and y = -2U, 
but it is always linearly unstable to perturbations of the form 

b a Uk 
k k U 

x = p +- cos kp -- sin kp + -eat{A1 cos kp + A ,  sin kp},  ( 2 . 9 ~ )  

y = eut{A, cos kp + A ,  sin kpj, 

ysp  = - 2U( 1 -a cos kp- b sin kp), 

(2.9b) 

( 2 . 9 ~ )  

which the growth rate u is given by 
8 = V k 2 .  (2.10) 

Note that the limit of (2.7) as H + O  is (2.10), indicating how a thin vortex layer 
might be an appropriate regularization of a vortex sheet, but these results do not 
reveal clearly the general connection between vortex layers of vanishing thickness 
and vortex sheets. This is the subject of the next section. 

3. Asymptotic expansions for small thickness 
In this section, the evolution of thin vortex layers will be studied in the limit of 

vanishing mean thickness. At any fixed time, the two bounding curves of a vortex 
layer should converge to a limiting curve. Since the general properties of the 
bounding curves, such as the continuity of their normals, are not known as they 
evolve, little can be said about the nature of the limiting curve. Even if the bounding 
curves are assumed to be analytic for all time, it is not necessary that the limiting 
curve will be analytic. Thus it will be necessary to make some assumptions in order 
to derive a perturbation expansion. 

As a starting point for the analysis of the behaviour of thin layers, the bounding 
curves may be considered to lie a short distance on either side of the limiting curve. 
However, the Lagrangian motion of points on the bounding curves may result in 
their displacement tangentially to the limiting curve. Consequently, the use of a 
parametrization based on Lagrangian motion is inconvenient. Instead, a new 
parametrization is introduced to ensure that points on either bounding curve with 
the same label will converge to the same point on the limiting curve. The idea is to 
express the bounding curves in terms of their distance along the normal to the 
limiting curve. The definition for the motion of points on the bounding curves must 
be modified so that a point on either bounding curve normal to a particular point on 
the limiting curve will remain so subsequently. 

A further generalization is needed. One expects the limiting curve to be a vortex 
sheet up to the time of singularity formation, but beyond that time the nature and 
even the existence of the vortex sheet is in question. A major motivation for this 
study is to determine the nature of the limiting curve beyond the time of singularity 
formation, for if the limiting curve is well-defined and smooth, then presumably it is 
a vortex sheet. On the other hand, if the limiting curve does not have a continuous 
normal, then its use as an agent to establish the parametrization of the bounding 
curves is invalid. Therefore it is useful to consider the limiting behaviour of certain 
curves defined within the vortex layer, for example the centre curve as defined by 
Moore (1978) or a material curve that moves with the fluid. Either of these internal 
curves may be used in place of the limiting curve as the way to define the 
parametrization of the bounding curves. The study of the limiting form for the layer 
and the internal curve can then be done simultaneously. The advantage of this 
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approach is that no guess is required for the limiting curve. Also, a material curve has 
a well-defined motion for all time, and so one may hope that a limiting material curve 
may exist for all time. 

Let zlie within the vortex layer and be either a vortex sheet, a centre curve, or a 
material curve. The bounding curves are assumed to have the form 

( 3 . l b )  

For convenience, explicit time dependence will not be shown. The real-valued 
functions H ,  and H ,  give the distance of the bounding curves to z along its normal 
and are assumed to be single-valued and smooth. A schematic is given in figure 2. 

The mot’ion of a point, labelled p ,  on one of the bounding curves, labelledj, will no 
longer be with the fluid flow. Let w,(p) be the fluid velocity at that point; namely, 
w j ( p )  = w(z,(p)). Then the motion of the point will be given by 

where uj is a real parameter controlling the speed that must be added to the fluid 
velocity along the tangent to the bounding curve so that the point remains on the 
normal to the internal curve a t  ~ ( p ) .  The motion in the normal direction of any point 
on the bounding curves will be that of the fluid, for kinematic reasons. 

For layers with small mean thickness, H ,  the following expansions are assumed : 

H,(P) = h,1(P)H+hj,(P)H2 +O(H3)>  ( 3 . 3 ~ )  

(3.3b) = q o b )  + a j l ( P )  H+ O(H2)> 

q(13) = w, , (p)+w, , (p)H+O(H2) ,  (3 .3c)  

( 3 . 3 d )  Z ( p )  = d p )  + 4 ( p ) H + z ” , ( p ) H 2  + O W ) ,  

m ( p )  = w(p)+zfJ , (p)H+O(H2).  (3 .3e)  

We define also Tk = h,, + h,,, and Ahk = h,, - h2k. Note that the internal curve, z, 
trapped between the bounding curves, must also converge to the limiting curve, z,  
but an additional assumption is made; the parametrization of zmust be well-defined 
in the limit of vanishing thickness. There are simple examples where this is not the 
case. Consider T(p)  = p + 2  sin (p)+iHsin ( p ) .  This curve is well-defined for H > 0, 
but when H = 0, the limiting curve is obviously y = 0, although the parametrization 
fails since s,(p) = Ixp(p)I has zeros. 

The above expansions are substituted into (3.1) and (3.2) and terms up to O(H2)  
are retained. The integrands in (2.2) must be expanded to O(H3)  in order to obtain 
the expansion for the complex velocity to O(H2) .  Details have been omitted, but are 
available from the authors in the form of a report. We present here only the results. 

We start by assuming that the limiting curve is a vortex sheet and by choosing the 
internal curve to be that vortex sheet. In  this case, ilj and Tare independent ofH, so 
z f J ,  = 0 and .Z, = 0 for j > 0. Furthermore, 

(3 .4)  
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- - _ _  z I I _ _ _ - - -  ----------I--'----------- - - _ _  
_ _ _ - - -  I---- --  ---.-I - - -  

FIQURE 2. An illustration of the notation. 

where y is the vortex sheet strength. To lowest order, the motion of the layer becomes 
that of the vortex sheet provided 

2UT, = - y ,  aj0 = k UT,. (3.5a, b) 

The upper and lower signs correspond t o j  = 1 and 2 respectively. The result in ( 3 . 5 ~ )  
makes physical sense. It states that the vortex sheet strength is the product of the 
vorticity ( -  2U/H)  and the local thickness (to leading order T,  H ) .  The results at the 
next order give an evolution equation for T, : 

Since is proportional to y ,  (3.6) gives the correct statement of the conservation of 
circulation along a vortex sheet. 

Clearly then, if the vortex sheet exists, the motion of the finite layer will converge 
to it in the limit of vanishing thickness. However, it is the existence and nature of 
the sheet that is at question and so this result is most useful in specifying the initial 
conditions when the vortex sheet is replaced by vortex layers. Their local thicknesses 
must scale appropriately with the vortex sheet strength. The early motion should still 
converge to the vortex sheet, but when the sheet reaches a curvature singularity, it 
is no longer clear that the asymptotic procedure remains valid. Instead, the motion 
of other curves, also lying inside the layer, may be studied in the limit of vanishing 
thickness. 

We consider next the centre curve as defined by Moore (1978). The centre curve 
has the property that the bounding curves lie an equal distance on either side of it 
along its normal; thus H ,  = H , ,  or Ah, = 0. However, its complex velocity w* must 
be determined. The results at lowest order are 

a,o = C k  UT,, (3.7a) 

where the upper, lower sign correspond to j = 1,2 respectively. Also 

(3 .7b)  

which is the motion of a vortex sheet of strength -2UT,, with an arbitrary tangential 
speed, C, which may depend on p and t .  The presence of C arises from the fact that 
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the lowest-order equations form a singular system. One would normally expect a 
compatibility condition applied to the system of equations at next order, to 
determine C. However, the compatibility condition is automatically satisfied and one 
finds 

T’sp+T,spRee}-A(CT,l  at aP = 0, 

which is the correct statement of conservation under the motion of the curve given 
by (3.7b). That the variable C is not determined reflects the lack of definition for the 
parametrization of the centre curve. Any curve may have its parametrization 
changed by a variable shift along its tangent. Moore (1978) fixes the parametrization 
of the boundary curves and so the parametrization of his centre curve is determined. 
We are free to specify C and the easiest choice is to set it to zero. The general solution 
for the first-order correction to the complex velocity of the centre curve is 

where 

and K is the curvature: 

K = I m { y } .  

Again, the motion is arbitrary to some tangential speed, A .  Presumably, the 
application of the compatibility condition to the next-order equations would 
determine A ,  but we find the calculation too formidable. Instead, our results are 
compared to Moore’s (1978). He wrote his results, correct to 0 ( H 2 ) ,  as the motion of 
a vortex sheet plus a correction term. In our variables, Moore’s result is 

(3.10) 

where 7 = - 2U(T, + HT,) ,  and C = I m  (zpp g/.”,>. Our results are 

(3.11) 

and there is complete agreement with Moore’s result if A = -Zy2/24U. Since A has 
not been determined, all that can be stated is that there are no inconsistencies 
between the results. 

Finally we turn to the third choice for the motion of the curve internal to the layer, 
a material curve. A material curve is composed of points that follow the motion of 
the fluid; hence, 

az 
-(P) = W P )  = W ( P ) ) ?  (3.12) 
at 

where W(Z)  is given by (2.2). The results at lowest order are 

mjo = u(& k q), ( 3 . 1 3 ~ )  
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where the upper, lower signs correspond to j = 1 ,2  respectively. Also, 

171 

(3.13b) 

which is the motion of a vortex sheet of strength -2UT,. The equations a t  the next 

a 
at aP 

order give the result 
s s p  + sp Re {?}- U- (TI Ah,) = 0,  (3.14) 

which is the correct conservation equation for the circulation along the curve under 
the motion given by (3.13b).  

In summary, we find that the layer and any of the chosen internal curves become 
a vortex sheet in the limit of vanishing mean thickness. Several assumptions are 
made: all curves are smooth (have at least a continuous curvature), the distances of 
the boundary curves from the internal curve or the limiting curve are single-valued, 
smooth functions of the parametrization, and all the expansions are power series in 
the mean thickness. In $$5 and 6, a numerical study of the evolution of the layers 
is conducted, and the results show that these assumptions can fail. 

4. Numerical results 
This section describes the numerical methods used in evolving the boundaries of 

the vortex layers, material curves within a layer, and vortex sheets. As shown in $2, 
the velocities for all of these can be expressed as boundary integrals with Cauchy 
kernels. The evolution equations for the layer interfaces, (2.5), are solved by the 
method of lines. The interfaces are represented by a distribution of points, and the 
differential and integral operators on the right-hand side of (2.5) are replaced by 
approximating discrete operators. The resulting system is then a finite set of ordinary 
differential equations in time, which is integrated by a fourth-order, Adams-Moulton 
predictor-corrector method. The Adams-Moulton method is used also to integrate 
the motion of vortex sheets and passive interfaces described later. 

There are two main considerations in selecting a numerical method for the 
evaluation of the boundary integrals. One is efficiency: the number of operations 
required to evaluate the integrals should be as low as possible for a given level of 
accuracy. The other consideration is accuracy, which is particularly important in this 
study, since attention will focus on whether singularities form along the boundaries. 
Truncation errors may affect the real motion in several ways, but our primary 
concern is that they may diffuse or disperse the formation of singularities. If a low- 
order method is used, then the truncation errors do not change substantially over a 
few doubling5 in the choice of the number of quadrature points, and so its insiduous 
effects, if present, may be hard to detect. Consequently, we have selected a method 
that is highly accurate and efficient. 

The boundary integrals are of two distinct types. The first integral has the form 

For example, this form arises by setting 7 to z l ( p )  in the first integral in (2.2). Despite 
appearances, the integrand in (4.1) is a smooth, periodic function of q, because the 
kernel P(z(p) , z (q) )  has a Cauchy-type singularity a t  q = p which is cancelled by a 
compensating zero in p ( q ) - p ( p ) .  By taking the collocation points to be uniformly 
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distributed in q, the integral can be evaluated with spectral or infinite-order accuracy 
by the trapezoidal rule over the collocation points. Accuracy is then limited by the 
approximation to z,(q) a t  the collocation points. In  this work, derivatives are 
approximated by periodic, quintic splines with an accuracy of O(Aq6) .  

The second type of integral in (2.2) has the form 

m4 = fi‘ (Y1(4)-YYk(13))P(zk(33), z,(q)) z,,(q) dq, (4.2) 

wherej =# k. This form arises, for example, when the field point T,I is set to z2 (p )  in the 
first integral in (2.2). This type of boundary integral is much more difficult to 
evaluate accurately. While the trapezoidal rule may still be applied over the 
collocation points to yield spectral accuracy formally, large errors are incurred 
nonetheless when the interfaces are close. Accuracy can be restored by adaptive 
techniques which construct new sets of quadrature points, while still preserving 
spectral accuracy. For details see Baker & Shelley (1986). The application of these 
adaptive methods requires interpolated values for z,(q) and zj,(q) between the 
collocation points. Such interpolations are accomplished by the construction of local, 
quintic Hermite polynomials on each subinterval of the mesh, where the necessary 
approximations to the derivatives a t  the collocation points are found by iterated, 
periodic, quintic splines (Shelley & Baker 1988). The overall accuracy is O(Aq6).  

The accuracy of the calculations is checked by several different measures. First, for 
short times, the computed solution agrees with the approximate solution provided 
by a fourth-order perturbation expansion to within the accuracy of the expansion. 
At intermediate times, convergence of the calculation is verified by monitoring the 
point-wise convergence of the layer interfaces as both the spatial and temporal 
resolution are varied systematically. The area and first moments of a periodic 
segment, and the perturbation kinetic energy, are constants of the motion that are 
monitored. We find that the error in the perturbation kinetic energy, whose 
calculation is described in Appendix A, consistently overestimates the point-wise 
error of the numerical solution. If this relationship is generally correct, then our 
calculations are correct to within five digits even at long times, when costs make 
studies of point-wise convergence too expensive. The other constants of the motion 
are conserved well by our calculations, but of course these global error estimates 
cannot guarantee point-wise accuracy. The errors in these constants are given later 
with the details of specific calculations. 

As will be seen in the next section, the motion of the vortex layer leads to the 
formation of regions of high curvature, and regions of stretching in the bounding 
interfaces. To maintain resolution of the interfaces, and consequently accuracy, the 
mesh is redistributed periodically to resolve the regions of high curvature, and to keep 
collocation points in the regions of rapid stretching. The mesh redistribution is based 
on the concept of an ‘equidistribution’ of a function which measures (in some 
sense) the variation of the solution. Details of the equidistribution method and its 
implementation are given in Appendix B. It should be noted that the mesh 
redistribution is not of the insert-and-delete type, which leads to non-smooth meshes, 
but instead finds a smooth reparameterization for the interfaces. 

In $6, the limiting behaviour of the vortex layer will be studied. For this, the 
motion of material curves and of vortex sheets must be computed. The velocity a t  
a point z ( p ,  t )  on a material curve is given by 

(4.3) 
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where w is the fluid velocity, as given by (2.2). The evaluation of integrals of a similar 
form to (4.2) is required, and is done by the adaptive quadrature methods discussed 
above. 

The evolution of a periodic vortex sheet is governed by the periodic form of the 
Birkhoff-Rott equation given in (2.8). Shelley (1990) shows that the trapezoidal rule 
using alternate points gives a spectrally accurate approximation to the Birkhoff-Rott 
integral. Because of sensitivity to round-off errors (Krasny 1986a), calculations are 
done with a precision of 29 digits and a spectral filter is used to prevent the rapid 
growth of the smallest-scale modes introduced by round-off errors. The computed 
solution is checked at  early times against the solution obtained from the Taylor series 
in time derived by Meiron et al. (1982). The results obtained this way (Shelley 1990) 
are an improvement on the results obtained by Krasny and Meiron et al., especially 
at times shortly before the singularity time. 

5. The evolution and regularity of the vortex layer 
The initial conditions considered here are of the form 

zl(p, t  = 0) =p-iiH(l-acosp), (5 .1~)  

z2(p,t  = 0 )  =p+i$H(l-acosp), (5.lb) 

with a < 1. The motivation for this choice lies in the results given in $3; the limit of 
(5.1) and (2.4) as H+O,  while U (or equivalently the circulation around a periodic 
segment) is held fixed, is a vortex sheet at  

P) = P, 

y(p) = -2U(1 -a cosp). with strength 

( 5 . 2 ~ )  

(5.2b) 

For a 4 1, the linear motion of the vortex layer with initial condition (5.1) may be 
determined from (2.6) as 

Ua Ha 
2a W 

z1 = p + - sinh at(cosp - 1) + - (1 - e-H) (cosh at - 1) sinp, ( 5 . 3 ~ )  

Ua Ha 
2a W 

x2 = p--sinh at(cosp- 1) +- (1 -e-H) (cosh crt- 1) sinp, (5.3b) 

aaH2 
2UD 

y1 = - i H  + ;Ha cosh at cos p + - sinh at sin p, (5.3c) 

auH2 
2UD 

y2 = 4H - 4Ha cosh at cos p + - sinh at sin p, (5.3d) 

where a is the real, positive root of H2a2 = U2[e-2H - (1 - H)2] (this requires H < 1.2), 
and D = e-H - 1 + H .  The centre curve for the linear motion of the layer may be 
determined approximately within the assumptions of linear theory (see Appendix C), 
and, as H+O,  it agrees with the linear motion of the vortex sheet with initial 

(5.4) 
condition (5.2) : 

Besides illustrating some aspects of the asymptotic results in $3, the linear results 
show how the unstable motion of the layer relates to that of the vortex sheet. In 
particular, perturbations of the layer that have equal amplitudes in the disturbance 

z = p -a( 1 - cosh Ut - i sinh Ut) sinp. 
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H N At T AT k ,  
0.20 512 0.01 4.70 0.1 4,6,7,9 
0.10 512 0.005 3.45 0.05 5,6,7, .. . 
0.05 512 0.0025 2.60 0.05 3,5,6,7 ,... 
0.025 512 0.001 25 2.05 0.025 7,9,10,11, ... 

TABLE 1. The values of the numerical parameters for the layer calculations. H is the mean 
thickness; N is the number of collocation points for each interface; At is the time step. Grid 
redistributions are done at times, T +  k,AT, where T is the first time, AT is the smallest interval 
between redistributions, and k, are positive integers. The time step is halved when t > T .  

H Kinetic energy Area r-moment y-moment 

0.20 4.42 x lo-@ 2.69 x 4.27 x 10-13 1.04 x 10-lo 
0.10 1.89 x i .50 x 10-9 2.77 x lo-" 6.62 x 
0.05 3.98 x 2.45 x 1.13 x lo-" 1 . 1 8 ~  
0.025 7.66 x 1.84 x 4.70 x lo-" 1.36 x lo-" 

TABLE 2. Maximum errors in the perturbation kinetic energy, and in the area and first moments 
of a periodic segment, incurred during each calculation listed in table 1. All errors are relative, 
except those for the y-moment. The y-moment is zero for these calculations. 

of each interface, but are out of phase, correspond to perturbations in the strength 
of a flat vortex sheet. On the other hand, perturbations that are in phase correspond 
to perturbations in the position of vortex sheet of constant strength. General 
perturbations are a linear combination of these two cases. 

Meiron et al. (1982, subsequently referred to as MBO) examined the singularity 
structure of a vortex sheet evolving from the initial condition (5.2), and found strong 
evidence to indicate that such a vortex sheet loses its analyticity a t  a finite time. In 
a periodic interval, 0 d p < 2n, the vortex sheet acquires a curvature singularity a t  
p = 7c. MBO found an asymptotic estimate for the critical time, t,, based on the 
analysis of Moore (1979), but the numerical results of both MBO and Shelley (1990) 
suggest that the asymptotic result is an underestimate. We select U = t ,  a = $ as 
values that lead to the formation of the singularity in a reasonable time. In fact, the 
highly accurate results of Shelley (1990) give t, = 1.61510.010, whereas Moore's 
asymptotic estimate is t, x 1.44. The estimate found by MBO is t, x 1.6. The 
evolution of vortex layers with U = and a = $ is calculated numerically for various 
mean thicknesses, H = 0.025, 0.05, 0.1, and 0.2. Table 1 lists the choice of the 
numerical parameters for each calculation with finest resolution. Note that the 
number of collocation points is large enough that all growing modes, according to 
linear theory, are represented in the calculations. Table 2 lists the maximum errors 
incurred during each calculation in the perturbation kinetic energy, and in the area 
and first moments of a periodic segment of the layer. Clearly our calculations have 
a high degree of accuracy. The case H = 0.025 corresponds to an aspect ratio of 250 
to 1, and is the thinnest layer our numerical method can compute reliably. The 
reason why it is difficult to calculate the motion of thinner layers may be understood 
heuristically from linear theory. The most unstable disturbance grows a t  a rate 
0.4U/H, and it will affect the motion of the layer before t ,  if its initial amplitude 
exceeds a,, = Hexp (-0.64/H). For H = 0.025, a. x 2 x and is close to the order 
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FIQURE 3. The location of the layer interfaces for H = 0.025 at various times. 

of the round-off error committed on a Cray computer. Our attempts to calculate a 
layer with H = 0.0125 failed owing to the appearance of round-off errors. 

Figure 3 shows the location of the layer interfaces with H = 0.025 at various times, 
t = 0,2.0 and 2.4. The location of the interfaces for a thicker layer, H = 0.1, is shown 
in figure 4 at times, t = 0,2.0,2.4, and 4.0. The evolution occurs in three phases. First, 
the vorticity advects to the centre (at p = n), causing a further thickening there due 
to incompressibility. Second, the vorticity in the centre quickly reforms into a 
roughly elliptical core with trailing arms, which subsequently wrap around the core 
as it revolves. It is possible that these cores are similar to the rotating ellipses found 
by Kida (1981) that exist in an external strain flow, the strain flow in this case being 
induced in part by the periodic extensions of the layer. The aspect ratio of the cores 
falls within the 3 : 1 linear stability requirement given by Love (1883) for Kirchhoff 
ellipses, but the more relevant stability condition might be that of rotating ellipses 
in a strain flow (see Dritschel 1990). We note also that the smaller the value of H ,  the 
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FIQURE 4. The location of the layer interfaces for H = 0.1 at various times. 
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FIGURE 5. The evolution of the logarithm of the maximum curvature of the lower interface for 

H = 0.025. 

more intense the vorticity, and the faster the vorticity advection and subsequent 
roll-up. Visually, the cores with their trailing arms are very similar to the structures 
observed by Zabusky et al. (1979) in their numerical simulation of the evolution of 
vortex patches. Our simulations also agree qualitatively with the vortex-layer 
simulations done by Pozrikidis & Higdon (1985), who used a different formulation 
and numerical method. 

Owing to the nature of the vortex sheet singularity, the evolution of the interfacial 
curvature is of special interest. Using H = 0.025 as an example, it is apparent from 
figure 3 that the curvature grows rapidly in the region of the interface where the arms 
attach to the central core. Figure 5 displays the behaviour of the logarithm of the 
maximum curvature as a function of time. At first, the curvature grows only slowly, 
but then grows very rapidly as the core develops and the trailing arms begin to roll 
up. The logarithm of the maximum curvature shows only that the curvature is 
growing super-exponentially, but whether it becomes infinite in a finite time is 
unclear. 

To gain more quantitative information concerning the regularity of the interfaces, 
we use the procedure employed by Sulem, Sulem & Frisch (1983). The decay of the 
computed spectra of the periodic function Z(s, t )  = zl(s, t )  - (27c/S) s is examined, 
where s is the arclength such that s = 0 a t  p = 0, and S is the arclength of a periodic 
segment of either interface. If Z(s, t )  is analytic in the strip, Im SE (-a, ti) in the 
complex s-plane, and has isolated branch-point singularities of order P(t) - 1, act) - 1 
on the lower, upper boundaries of the strip, then the asymptotic behaviour of the 
Fourier amplitudes, A(k, t ) ,  is given by 

This form for A(k,  t )  is also suggested by the nature of the singularity for the vortex 
sheet. As long as a and ti are positive, the interfaces are analytic. If either a or a 
vanish in finite time, then a branch-point singularity touches the real axis of the 
arclength and the layer interface has a singularity in its nth derivative, when n is the 
largest integer less than /3 or p, respectively. 

Values for a, ti, P, 8, C,  and C are obtained by a least-squares fit to the 
approximate spectra computed by the discrete Fourier transform. First, the 
interfaces are reparameterized in terms of the arclength. This is done by the 
procedure described in Appendix B. Enough points must be used in the arclength 



178 

0.2 - - 

a(0 
0.1 - - 

0 -  

G .  R. Baker and M .  J .  Shelley 

I I 

- 20 

- 25 
- 1024 -512 0 512 1024 

k 

FIGURE 6. The Fourier speotra of the lower interface for H = 0.025, given at sequential times, 
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representation to resolve the smallest scales that are present in the original 
parameterization. Figure 6 displays In IA(k, t)l for the case H = 0.025. The profiles 
show a growth of the small scales in time. 

The profiles in figure 6 are fitted to lnIA(E,t)(, as given in (5.5),  in the range 
- 18 < In IA(k, t)l < - 15, to determine a, 6, p, p, C, and C. Using a nonlinear least- 
squares fit to IA(k, t)l makes little difference to their values. As an indication of the 
accuracy of the fit, the average of the squared deviation for the least-squares fit to 
In IA(k, t)l is less than In all cases, a = d > 0 to within the accuracy of the fit. 
Figure 7 displays a(t)  for several values of the mean thickness, H = 0.025, 0.05, 0.1, 
and 0.2. Although a becomes increasingly smaller, it does not seem to vanish in finite 
time. Also shown is the behaviour of a for the vortex sheet, obtained by extrapolation 
of numerical results for the evolution of the vortex sheet prescribed by (5.2). The 
curves for finite H have the appearance of nested hyperbolae with asymptotes, the 
time axis and the graph of a(t) for the vortex sheet. This behaviour signals again an 
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unusual limiting process. The results indicate that p = 2.3k0.1 and p= 1.7 kO.1 for 
large enough times, independently of the value for H .  The value of p is close to that 
obtained in the case of the vortex sheet. 

In  conclusion, it appears that the interfaces remain analytic for all time during the 
evolution of vortex layers that start from initial conditions (5.1). Of course, several 
assumptions have been made. For example, we assume a certain form for the decay 
ofthe magnitude of the Fourier coefficients for the location of the interfaces. It is also 
assumed that there is no new, different behaviour in the motion of the layers a t  much 
later times. The issue here is that small scales, beyond the resolution of our 
calculations, may evolve into some structure with singularities. The results of 
Dritschel(l988) show that small protuberances on vortex patches may grow into long 
filaments. To the resolution of our calculations, no small protuberances formed on 
the layer boundaries. An examination of the surface rate of strain, defined by 

, (5 .6)  
x,u,+ ypvp 

8; 

St = 

reveals that the interfaces stretch everywhere along the trailing arms, and compress 
only in a small region of the core adjacent to the point of high curvature where the 
trailing arms attach to the core. While surface stretching should act as a stabilizing 
agent (Moore & Griffith-Jones 1974), the trailing arms may not be stable until many 
more turns in the spiral are present (Moore 1976). The physical relevance of the 
presence of such instabilities will be discussed in $7 .  

6. The limit of vanishing thickness 
In  this section, the behaviour of the vortex layer is examined as its mean thickness 

is reduced, while its circulation around a periodic segment is held constant. For the 
initial conditions (5.1), the asymptotic analysis of $3  shows that the limiting 
behaviour is the vortex sheet considered by MBO, which acquires a singularity in 
finite time. The main objective in this study of the limiting behaviour of the vortex 
layer is the hope of elucidating the existence and nature of the vortex sheet beyond 
the singularity time. 

From figures 3 and 4, it  is clear that the central region of the layer has the most 
interesting behaviour. The trailing arms lie a t  a similar location for thinner layers, but 
the formation of the roughly elliptical cores, their size and orientation vary quite 
markedly. In  figure 8, there are several sequences of layer profiles for various 
thicknesses, showing an enhanced view of the central region. Each column gives a 
sequence of layer positions at various times with H fixed, and goes as far as the 
computation is reliable, i.e. has a t  least 5 digits of accuracy in the perturbation 
kinetic energy. Each square is centred at  (n,O) with sides of length tn. For a fixed 
time, beyond the critical time, the central region of the layers does not show a 
converging pattern, but a t  different times one can observe a similarity in the profiles. 
This non-uniform behaviour makes it very difficult to extrapolate the limiting 
behaviour from the profiles of the layer. 

Instead, the limiting behaviour of certain curves internal to the layer are 
considered. The asymptotic analysis in $3 shows that both the material curve and the 
centre curve, defined by Moore (19i8), will become the same vortex sheet as the layer 
in the limit. The first step then is to validate the asymptotic results by examining the 
limiting behaviour before the singularity time. Subsequently, the limit after the 
singularity time will be studied carefully. 
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FIQURE 8. The core region of the layer interfaces for various times and thicknesses. Each box 
has dimensions, gx by Zjn, and is centred at ( x ,  0). 

The location of the centre curve is determined a t  each time by the property that 
the two bounding interfaces lie an equal distance on either side of it along its normal. 
Specifically, given the layer interfaces z1 and z2,  the quantities zA(s), TA(s), and p,(s) 
are found such that 

zj(pj(s)) = zA(s)  -.  +I-- T~(s) for j = 1,2. (6.1) 2 as 

Here zA(s) denotes the centre curve parametrized by its arclength s, T’(s) is the local 
thickness of the layer in the direction of the normal, i(azA/as) (a), and p,(s) relates the 
given parametrization of the bounding curves to the arclength of the centre curve. 
The upper, lower sign in (6.1) corresponds to j = 1,2,  respectively. Details of the 
construction of the centre curve are given in Appendix C. We define 

2u 
?A(’) = TA(s)W* (6.2) 

Asymptotically, y A  will approach the vortex sheet strength. Note that the position, 
ZA, and y A  are independent of H initially and are equal to the initial position and 
strength, respectively, of the vortex sheet prescribed in (5.2). 
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The other curve, rE, the material curve, moves with the fluid, and i s  found as the 
solution to the initial-value problem, 

where the velocity, w(zB(p , t ) ) ,  is given by (2.2). Some comments about the initial 
condition, (6.3), are in order. The asymptotic analysis does not indicate a preferred 
selection for the initial location of the material curve. Initial condition (6.3) is the 
obvious choice. Following the analysis in $3, we express the relationship between the 
material curve and the bounding curves as 

where H j  is the distance along the normal from the material curve to the j t h  
bounding curve. The subscript p refers to differentiation. Given z , (p)  and z,, the 
widths H3(p) ,  and the mappings p , (p )  are determined numerically using Newton's 
method. We define 2u 

= TE(p) 7 (6.5) 

where T,(p) = H,(p)  +H,(p)  is the local thickness. Asymptotically, yB approaches 
the vortex sheet strength. Note that y E  is independent of H initially and equals the 
initial strength of the vortex sheet prescribed by (5.2). Since TA and T, are measured 
along the normals of different curves, y A  and y E  give different approximations to the 
vortex sheet strength. 

As a verification of the asymptotic analysis in $3, the limiting behaviour of the two 
internal curves is considered a t  t = 0.5, which is well before the singularity time. In  
figure 9 ( a ) ,  the centre curve (solid) is shown for values of H that are successively 
halved. The convergence of the position of the centre curve to the position of the 
vortex sheet (dashed) is clearly linear in H as predicted by the asymptotic theory. 
Figure 9(b) shows the convergence of y A  to the vortex sheet strength. Here the 
horizontal coordinate axis is given in the signed arclength from p = n (6 = 0). The 
position of the material curve and y e  show the same behaviour. Again, the point-wise 
convergence to the vortex sheet is O ( H ) ,  consistent with the asymptotic theory. 

Next, the limiting behaviour is considered at t = 1.6, which is just before the 
critical time of the vortex sheet. Figure 10 displays the same quantities as figure 9 .  
The results for the material curve 'are again very similar to those for the centre curve. 
For both the centre and material curves, z and y show an O ( H )  convergence except 
near the vortex centre ( p  = x), which is the location of the vortex sheet singularity. 
Near the centre the convergence is not as apparent, but the difference between the 
results for successive halvings of the mean width is decreasing. We note also that the 
limiting behaviour of y is consistent with the formation of a cusp in the vortex sheet 
strength a t  the centre (MBO ; Moore 1979). 

The more interesting questions involve the behaviour of the layer and the internal 
curves beyond the singularity time of the vortex sheet. As described in Appendix C, 
the set of nonlinear equations, (6.1), is solved to give the location of the centre curve. 
In figure 11, the centre curves are shown for the same vortex layers that are shown 
in figure 8. As H is reduced at a time beyond t , ,  the behaviour of the centre curve 
becomes increasingly non-uniform, raising the question of whether a well-defined 
limit exists for the centre curve, and consequently for the layer. 

We take particular note of the results a t  t = 2.4, the last time a t  which the 
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FIGURE 9. (a) The location of the centre curves (solid curves) a t  t = 0.5 for various thicknesses, 
H = 0.2, 0.1, 0.05, and 0.025. The sequence approaches the location of the vortex sheet (dashed 
curve). ( b )  The profiles of y A  (solid curves) at  t = 0.5 for various thicknesses, H = 0.2,0.1,0.05, and 
0.025. The sequence approaches the profile of the vortex sheet strength (dashed curve). The inset 
gives an enlarged view with -0.1 < 9 < 0.1 and 1.505 < y A  < 1.535. 
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evolution of the layer is calculated reliably for all four values of H .  In figure 12 (a ) ,  
the location of the centre curve is superimposed for the different values of H ,  showing 
clearly the convergence to a smooth curve away from the vortex core, but the profiles 
depend strongly on H near the core. In figure 12 (b ) ,  y A  is shown as a function of the 
signed arclength s at the same time, t = 2.4. While the non-uniform behaviour is 
again clearly apparent, more striking is the observation that y A  is diverging a t  s = 0. 
For the thinnest layer, y A  exhibits an interesting structure; from the high peak 
which occurs at  the core centre, y A  drops sharply to a local minimum where the 
trailing arms attach to the vortex core, and then climbs to another local maximum 
along the trailing arms. y A  is converging on the trailing arms to a variation that has 
the same appearance as the strength of a vortex sheet that is developing a doubly 
branched spiral. 

We consider now the behaviour of the material curve. In  figure 13, the locations 
of the material curve are shown for the same vortex layers that are shown in figure 
8, until t = 2.4. The behaviour of the material curve for H = 0.025 is generic and so 
we avoid the costly computation of its motion for the other layers a t  later times. The 
motion of the material curve emphasizes an important property of the motion of the 
layers. When the vortex core forms, it signals the transition from a flow that is 
mostly shearing to one that is mostly rotating in the core. Consequently, the material 
curve begins to wind up as a doubly branched spiral in the core on a timescale that 
is related to the vorticity in the core and which is much faster than the timescale for 
the trailing arms to roll up. 
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Figure 14 displays the positions of the material curve at t = 2.4 for the different 
values of H .  Like the centre curve, the locations of the material curve converge in 
regions away from p = x ,  but the convergence is increasingly non-uniform near the 
centre p = n itself. The roll-up of the material curve invalidates the assumptions in 
the asymptotic analysis; the mappings p j ( p )  in (6.4) are no longer defined. In 
particular, for each value of H there is a critical time, tg, at  which the equations in 
(6.4) cease to have a solution at  p = x ,  the location of the vortex sheet singularity. 
This time of failure, t g ,  is shown in figure 15 for the different choices of H .  

The breakdown in the assumptions of the asymptotic analysis for both internal 
curves is reflected in certain global properties of the layer. For example, the 
circulation around the core is proportional to the area of the core. The area of the core 
may be approximated by cutting off the trailing braids in the following manner. The 
points of maximum curvature on each bounding curve are joined by a straight line 
to the closest point on the opposite bounding curve. Once the vortex core forms, its 
area A ,  calculated in this fashion, stays constant in time to about three digits. The 
area is shown in figure 16 for the different values of H .  Also shown is the curve 
8.68H1.55, which is the best form fit with an algebraic power of H .  The circulation, r, 
of the core is equal to wA = 17UH0.55, which vanishes as H + 0, pointing out that most 
of the vorticity is in the trailing arms. 

The thickness of the core may be defined as double the least distance from the core 
centre to either of the bounding curves. The thickness is not steady, but appears to 
oscillate around a mean value. It is quite plausible that the cores are related to the 
family of rotating and oscillating ellipses in an external imposed strain, found by 
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FIGURE 11. The core region of the centre curves for various times and 
are the same as those in figure 8. 

thicknesses . The boxes 

Kida (1981). Here, the external imposed strain is induced in part by the rest of the 
layer. 

The thickness of the core, T,  is an important quantity since, on physical grounds, 
the thickness multiplied by the vorticity must give the vortex sheet strength a t  p = a 
in the limit of vanishing thickness. In figure 17, we show yT = 2UT/H as a function 
of time for the different values of H .  Also, the critical time for the vortex sheet, as 
calculated by Shelley (1990), is drawn as a vertical, dashed line. Before the critical 
time, yT converges to the maximum vortex sheet strength, but after the critical time, 
it rises rapidly to a maximum and then begins, we believe, to oscillate. The maximum 
value of yT increases with a decrease in H ,  consistent with the behaviour of y A .  An 
estimate for the thickness may be made based on the assumption that the cores are 
geometrically self-similar. Then, T x At x H0.775 , and so yT x H-0.225. 

7. Discussion and conclusions 
We begin with the obvious: there is always some uncertainty about the validity 

of numerical results. We assume that the calculations capture all the important 
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FIGURE 12. (a) The location of the centre curves at  t = 2.4 for various thicknesses, H = 0.2 
(dashed), 0.1 (chain-dashed), 0.05 (chain-dotted), and 0.025 (solid). (6) The profiles of yA a t  t = 2.4 
for various thicknesses, H = 0.2 (dashed), 0.1 (chain-dashed), 0.05 (chain-dotted), and 0.025 (solid). 

S 

effects. Then the results indicate an important difference between vortex layers and 
vortex sheets. At the beginning, their evolutions are similar ; a straining flow advects 
vorticity towards the central stagnation point. For the sheet, this results in the 
formation of a curvature singularity, while for the layer, vorticity accumulates into 
a new structure that changes the flow so that no new vorticity adds to the core 
subsequently. As the core rotates, the trailing arms are stretched and roll-up into a 
spiral. 

For thinner layers, the core structure becomes a smaller fraction of the total layer. 
In  fact, the core seems to collapse to a point with no circulation but infinite vortex 
sheet strength. If such a limit exists, it  might be an example of a weak solution to 
the Euler equations described recently by Majda (1987). Presumably, this limit 
would not be a solution to the Birkhoff equation. Of course, the real question is the 
limiting behaviour of the solution to the Navier-Stokes equations at some fixed time 
after the singularity time, starting with the vortex sheet (5.2) as an initial condition, 
Our calculations show some agreement with the recent calculations by Bell, Colella 
& Glaz (1988) of the evolution of shear layers at high Reynolds number. Their 
calculations also show the formation of vortex cores, but this is not surprising since 
viscosity broadens the shear layers and strain flow will cause cores to form. 
Unfortunately, their results give no apparent limit as the Reynolds number is 
increased, but the calculations may be suffering from grid-induced modes that grow 
rapidly owing to the basic ill-posedness of the Kelvin-Helmholtz instability. We 
designed our numerical method to minimize the appearance of spurious small-scale 
modes due to truncation errors. If care is not taken, truncation errors will cause the 
mode with greatest growth rate to emerge rapidly in the calculations. The increasing 
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FIGURE 13. The core region of the material curves for various times and thicknesses. The boxes are 
the same as those in figure 8. Only the computational points are shown for the t = 2.4 and H = 
0.028 case. 
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FIGURE 14. The location of the material curves a t  t = 2.4 for various thicknesses, 
H = 0.2 (dashed), 0.1 (chain-dashed), 0.05 (chain-dotted), and 0.025 (dotted). 
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FIGU~ 15. The times at which the mappings relating the material curves to the bounding curves 
cease to exist, for various thicknesses. The solid square marks the singularity time for the vortex 
sheet. 
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H 

FIGURE 16. Core area for different thicknesses. The solid line is 8.58H1.66. 

Time 

FIGURE 17. The evolution of the maximum local thickness times the absolute value of the 
vorticity, for various mean thicknesses. The dashed line marks the singularity time for the vortex 
sheet. 

sensitivity of the motion of thinner layers to perturbations in their initial conditions 
indicates important dynamical behaviour of physical relevance. 

If one accepts the crude analogy between our layer calculations and shear flow a t  
high Reynolds number, then several important observations can be made. As already 
noted, viscosity will thicken the layer, and in the presence of a strain flow that 
compresses the layer tangentially, vortex cores will form owing to incompressibility. 
In general, the size of these cores will be related to the thickness of the viscous layer. 
Also, one may expect these cores to be a t  the centre of evolving, doubly branched 
spirals. Thus viscosity plays an early role in the rollup of vorticity, a possibility noted 
by Moore & Saffman (197,3) in their work on the axial flow in laminar trailing 
vortices, although they sought a viscous solution a t  the centre of the spiral only after 
it had been formed. The strain flows that lead to the formation of vortex cores may 
arise from external conditions on the flow, such as the flow over wings, or they may 
arise locally from the development of unstable Kelvin-Helmholtz waves of small 

7 F L M  215 
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wavelength. Once the cores have formed, they will interact with one another, merge 
in some cases and form larger structures. 

Finally, we point out a similarity in our results with those of Krasny (1986b). One 
may interpret the smoothing parameter, 6, used in Krasny’s work as a smearing of 
the vortex sheet; then the innermost turns of his spiral will lie effectively inside a 
vortex core, since the spacing between the turns is less than 6. In  effect there are two 
regions in the spirals calculated by Krasny. The outer turns, which are independent 
of S to a good approximation, agree with the limiting curve that we obtain for the 
centre curve or the material curve. The inner turns, which are dependent on 8, do not 
agree precisely with the material curve, but they do have some similarity with the 
spiral that the material curve forms inside the core. The behaviour of the material 
interface inside the core does bring up an important point with regard to the 
comparison with experiments. The motion of a material line, such as a dye streak, 
released initially within a thin vortex layer, may not indicate the true nature of the 
vorticity a t  later times when cores have formed. 
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Appendix A. The calculation of the perturbation kinetic energy 
Pierrehumbert & Widnall (1981) show that the quantity 

is a constant of the motion for vortex layers. K is the perturbation kinetic energy. 
The stream function $ is continuous in the periodic strip and satisfies $- bl yI + 0 as 
JyJ+ m. Pierrehumbert &, Widnall (1981) reduce the calculation of K to the 
evaluation of boundary integrals over r, and r,, where the integrands have Cauchy 
and logarithmic singularities. Here, the evaluation of K will be recast so that only 
boundary integrals with Cauchy singularities need be evaluated, allowing use of the 
same adaptive quadrature methods as used in the calculation of the interfacial 
velocities, as discussed in $4. 

First, by letting f (y)  = b2 (so that A f = i) ,  and then by using Green’s second 
identity, the Divergence theorem, and the assumption of periodicity, (A 1) can be 
rewritten as 

- - - w i 1 f &%I) qq(d f Wd Yj(d x,,(!.7) - &;(!.7) (u,(d + v,(a) Yj,(!d)l dq. 
I-1 

(A 2) 

The upper and lower signs are taken with j = 1 and 2 respectively. Since the 
integrands are periodic and given a t  uniformly spaced values of q, the integrals in 
(A 2) can be calculated with spectral accuracy by the trapezoidal rule. The interfacial 
velocities, uI(p) and w,(q), are calculated from the interfacial positions, q ( q )  and y&), 
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by (2.4) with adaptive quadrature methods. The stream function $5 along rj may be 
calculated from 

$ j ( d  = $AO) + I" U 5 ( P )  Y5,(P) - W5(P) %m dP. 
0 

The indefinite integral is evaluated with spectral accuracy, a t  evenly spaced values 
of q, using the discrete Fourier transform. Thus, to complete the calculation of K ,  
$+(O) must be found. - -  

$5(0) is calculated by means of a distribution of dipoles along each interface. 
Namely, 

$(x, Y) = $(Y) f Re { m+ iY)>, (A 3) 
where (-UY in R, 

in R, 

(see figure 1 for definitions of R,) and 

Y(v(ll = x+ iY) = (Pj (d + i V j ( d )  P(% q d )  Z j q ( d  dq. (A 5 )  

The complex dipole strength is given by ,u5(q)+iu5(q). Note that once pj and vj are 
determined, Y(z5(0)) may be calculated using the same quadrature methods as used 
in calculating the velocity. The requirement of continuity of $ at the interfaces I', 
and r, determines pj as 

3 

39 q ( 2  1 

I m  { [ P(r7 y(df Z j g ( d  dq = 0. I 

1 
P,(d = u Y , t d  +ay,2(9) +4 > 

v. ( ) = -u 1 +jp5(")x5q(d 

( 
while the requirement of continuity of tangential velocity yields 

The integration of v , ~  is done numerically, with spectral accuracy, by use of the 
discrete Fourier transform. Fortunately, the constant of integration is unimportant 
since, for all 7, 

Finally, we note that 3 satisfies the far-field boundary conditions on y?, so Re { !P) 
must vanish as 1yI + 00. This is true if the y-moment of the vorticity in a periodic strip 
(which is constant of the motion) is zero. The set of initial conditions considered here 
satisfies this constraint. 

Appendix B. The method of grid redistribution 
The method of equidistributing meshes is adapted to parametrized curves in R2. 

For discussion and examples of equidistributing meshes for functions of a single 
variable, see Hyman & Naughton (1984). 

To be specific, let T ( p )  = ( ~ ( p ) ,  y ( p ) )  be a curve that is closed, or periodic in the x- 
direction, with 0 < p < 27c. I' can also be parametrized as r ( s ( p ) )  where s ( p )  is the 
arclength measured from p = 0. Let F(s )  be a strictly positive, periodic function that 
in some sense measures where r needs to be resolved by a mesh. In  particular, large 

7-2 



190 G .  R.  Baker and M .  J .  Bhelley 

or small values of Fs, indicate the sections of r where more or less collocation points 
are required. When r is not well-resolved in this sense, we seek a new 
parametrization, T(s( p’)), with the old and new parametrizations related by 

such that 

where 

p’ =f (p)  with f ( 0 )  = 0, 

F(4P’)) 8,’ = ( F ) ,  

Thus, a new parametrization is sought such that Fs, is everywhere equal to its mean 
( F ) ,  which is independent of parametrization. This is the method of equidistributing 
meshes. 

Using the relation, s,, d f/dp = s,, (B 2 )  becomes 

Thus, the mapping from p to p‘ is completely specified. If the current par- 
ametrization is non-singular, i.e. s, > 0, then since F(s(p)) > 0 by assumption, f is 
a strictly monotonic function of p, with f (0) = 0 and f ( 2 x )  = 27~. Thus, f maps [0,27~] 
onto itself, and is one-to-one. 

Let N be the number of points being used in the calculation, with h = 27~/N.  We 
seek the values of p at which the new parameter p’ is evenly spaced. That is, find the 
sequence {P,}:=~ with p ,  = 0 such that 

This equation is solved by Newton’s method for successive values of p,. In order to 
use Newton’s method, the indefinite integral must be evaluated at points other than 
the collocation points. At the collocation points, the indefinite integral is evaluated 
easily by the discrete Fourier transform of the integrand. We use the Hermite 
interpolation method, based on iterated, quintic splines described in Shelley & Baker 
(1988), to evaluate the integral a t  other points. Once the sequence {p,} is determined, 
r ( p k )  is found by Hermite interpolation. 

We use the following F :  
1 (KZ(8 )  + €2); 

(1) ( ( K 2 + € 2 ) $ ) ’  
F(s )  = -+w (B 7)  

where K ( S )  is the curvature. Note that if (i) K = 0 (r is a flat surface), (ii) K is a 
constant (I‘ is a circle), or (iii) w = 0, then F(s) is a constant, and the new 
parametrization will be equally spaced in arclength. Case (iii) is used for 
parametrizing the layer interfaces in the arclength coordinate for the spectral 
analysis in $5.  When K 4 0 and w =I= 0, then a weighting is given to curvature, and the 
redistribution method tries to resolve regions of high curvature. For our work, we use 
E = 0.001 and w = 1. These values are found by experimentation to work well. 

For time-dependent problems, it is important that the new parametrization 
remains accurate for at least a short while. For this, it is necessary to smooth F so 
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that its influence extends to a small neighbourhood in case the motion shifts F. We 
choose to smooth F by convolution with a narrowly peaked, periodic function, 

(sin $( p - 01 sinp))(2k), 
with k: = 6 and a = 0.95. 

Appendix C. The determination of the centre curve 
In  this Appendix, we describe the construction of centre curves for vortex layers. 

Given two non-intersecting, bounding curves (the layer interfaces), the centre curve 
is determined by the property that the two bounding curves lie an equal distance on 
either side of it along its normal; hence (6.1). We recast (6.1) into a pair of coupled 
ordinary differential equations for the mappings, pj(s), j = 1,2,  which relate the 
arclength parametrization of the centre curve (z(s),g((s)) to the given par- 
ametrizations of the bounding curves (xj(pj), y,(pj)), j = 1,2, so that (xj(p,(8)), 
y,(p,(s))) lies on the normal from the centre curve at (E(s), ~ ( 8 ) ) .  First, by adding the 
equations in (6.l) ,  we obtain 

~ l ( P l ( s ) ) + X z ( ~ z ( S ) ) - 2 ~ ( S f  = 0, Y,(P1(s))+Y2(1)2(9))-2g(s) = 0. (C 1% b) 

Then, by subtracting the equations, we obtain 

dz Ay dg Ax 
-(s) = -- , -(s) = - 
ds TA ds TA ’ 

where AX = X ~ ( P ~ ( S ) ) - X , ( P ~ ( S ) ) ,  AY = y1(p1(s))-yz(p2(s)), and T A  = ( A x ~ + A Y ~ ) ~ .  In 
principle, the centre curve could be solved from (C 1) as a nonlinear boundary-value 
problem, given boundary conditions that imply periodicity of the centre curve. 
However, we find it simpler to convert (C 1) into a set of ordinary differential 
equations and solve for the centre curve by a parallel shooting method. 

For the sake of brevity, dependence on p,(s) will no longer be shown explicitly. 
Differentiation of (C l a )  and (C l b )  with respect to s, and use of (C i c )  and (C I d )  
leads to the following system of linear equations for (dpJds) (s) and (dpz/ds) (s) : 

If the determinant of this system, D = (dxl/dpl) (dy2/dp2) - (dx2/dp2) (dy,/dp,), is 
non-zero, (C 2) can be inverted for dpl/ds and dpz/ds as 

We seek a solution to this system that will yield a periodic centre curve. 
Unfortunately, it is not clear that such a solution exists or is unique. The major 
difficulty is that D may vanish. There are points of symmetry for the centre curve, 
namely at the centre of the core (x = x) and the midpoint along the trailing arm 
connecting two cores (x = 0 or 2x), a t  which points D vanishes, and, if the centre 
curve exists, there must be a compensating zero in the numerators of (C 3). These 
conditions determine p, and p,. We call the points where D and the numerators 
vanish indeterminate points. Note that these particular indeterminate points occur 
where the minimum distance between the bounding curves has local extrema. 
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Furthermore, assuming that the zeros in D and the numerators are simple in s, say 
at  s = 0 for convenience, we expand the right-hand side of (C 3) around s = 0, and 
examine the limiting expression as s is taken to  zero. This yields two coupled 
equations for dp,/ds and dpz/ds at s = 0, which can be solved explicitly as 

where 

and K = (e/b)i. 

Before the establishment of the cores, we use the indeterminate points at x = 0 and 
x = 27t as initial points and integrate (C 3) numerically towards the centre. We find, 
by experimentation and the consideration of a model problem involving two 
parabolae for the bounding curves, that  the integration is stable numerically only 
when (C 3) is solved in the direction for which the bounding curves are separating. 
The two curves match a t  the indeterminate point a t  the centre. When the cores have 
developed, four new indeterminate points arise, located a t  local extrema in the 
minimum distance between the bounding curves. Two of them, located near the 
attachment of the trailing arms to the core, are points from which the centre curve 
can be integrated stably. The curves constructed by integration from the points a t  
x = 0, x = 27t, and the points near the attachment of the trailing arms to the core 
match a t  the core centre and a t  the remaining indeterminate points along the trailing 
arms. 

For the results reported in $6, the numerical integration is based on the fourth- 
order, Adams-Moulton predictor-corrector with a step-size of lop6 in the arclength. 
The initial points are located a short distance from the indeterminate points. More 
details and a deeper discussion of the nature of the centre curve will be given 
elsewhere. 
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